ESc 101: Fundamentals of Computing

Lecture 25

Mar 8, 2010

Outline

(1) Matrix Operations

Basic Matrix Operations

- Addition, subtraction
- Multiplication
- Inversion
- Computing Determinant

Basic Matrix Operations

- Addition, subtraction
- Multiplication
- Inversion
- Computing Determinant

Basic Matrix Operations

- Addition, subtraction
- Multiplication
- Inversion
- Computing Determinant

Basic Matrix Operations

- Addition, subtraction
- Multiplication
- Inversion
- Computing Determinant

Basic Matrix Operations

- Addition, subtraction: Simple
- Multiplication
- Inversion
- Computing Determinant

Basic Matrix Operations

- Addition, subtraction
- Multiplication: Done
- Inversion
- Computing Determinant

Basic Matrix Operations

- Addition, subtraction
- Multiplication
- Inversion: Will develop an algorithm
- Computing Determinant

Basic Matrix Operations

- Addition, subtraction
- Multiplication
- Inversion
- Computing Determinant: By definition, by Gaussian elimination

Determinant

Let $A=\left[a_{i, j}\right]$ be an $n \times n$ matrix. Its determinant is:

$$
\sum_{\pi} \operatorname{sgn}(\pi) \cdot \prod_{i=0}^{n-1} a_{i, \pi(i)}
$$

where

- π runs over all permutations of $\{0,1,2, \ldots, n-1\}$, and
- $\operatorname{sgn}(\pi) \in\{1,-1\}$ is the sign of permutation π.

Computing Determinant

- Computing determinant using the above formula will be very time consuming: as there are n ! permutations of $\{0,1,2, \ldots, n-1\}$, and the formula sums over all of these.
- There is a faster way known for computing determinant: Gaussian

Computing Determinant

- Computing determinant using the above formula will be very time consuming: as there are n ! permutations of $\{0,1,2, \ldots, n-1\}$, and the formula sums over all of these.
- There is a faster way known for computing determinant: Gaussian elimination.

Gaussian Elimination

Let $A_{0}=\left[a_{i, j}\right]$ be an $n \times n$ matrix:

$$
A_{0}=\left[\begin{array}{cccc}
a_{0,0} & a_{0,1} & \ldots & a_{0, n-1} \\
a_{1,0} & a_{1,1} & \ldots & a_{1, n-1} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n-1,0} & a_{n-1,1} & \ldots & a_{n-1, n-1}
\end{array}\right]
$$

First Step: Check if $a_{0,0} \neq 0$. If it is, add to it the first row whose first element is non-zero. If no such row exists, then the determinant is zero.

Gaussian Elimination

Let $A_{0}=\left[a_{i, j}\right]$ be an $n \times n$ matrix:

$$
A_{0}=\left[\begin{array}{cccc}
a_{0,0} & a_{0,1} & \ldots & a_{0, n-1} \\
a_{1,0} & a_{1,1} & \ldots & a_{1, n-1} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n-1,0} & a_{n-1,1} & \ldots & a_{n-1, n-1}
\end{array}\right]
$$

First Step: Check if $a_{0,0} \neq 0$. If it is, add to it the first row whose first element is non-zero. If no such row exists, then the determinant is zero.

Gaussian Elimination

Second Step: For every $i>0$, subtract $\frac{a_{i, 0}}{a_{0,0}}$ times the first row from the i th row. This makes $a_{i, 0}=0$ for all $i>0$.

After the first two steps, the matrix looks like:

where the values of many elements has been modified from their original value.

Gaussian Elimination

Second Step: For every $i>0$, subtract $\frac{a_{i, 0}}{a_{0,0}}$ times the first row from the i th row. This makes $a_{i, 0}=0$ for all $i>0$.
After the first two steps, the matrix looks like:

$$
A_{0}=\left[\begin{array}{cccc}
a_{0,0} & a_{0,1} & \cdots & a_{0, n-1} \\
0 & a_{1,1} & \cdots & a_{1, n-1} \\
\vdots & \vdots & \ddots & \vdots \\
0 & a_{n-1,1} & \cdots & a_{n-1, n-1}
\end{array}\right]
$$

where the values of many elements has been modified from their original value.

Gaussian Elimination

Let matrix A_{1} be:

$$
A_{1}=\left[\begin{array}{ccc}
a_{1,1} & \cdots & a_{1, n-1} \\
\vdots & \ddots & \vdots \\
a_{n-1,1} & \cdots & a_{n-1, n-1}
\end{array}\right]
$$

Next Steps: Repeat the first two steps for A_{1} and all the submatrices A_{2}, \ldots, A_{n-1} that arise.

Gaussian Elimination

Let matrix A_{1} be:

$$
A_{1}=\left[\begin{array}{ccc}
a_{1,1} & \cdots & a_{1, n-1} \\
\vdots & \ddots & \vdots \\
a_{n-1,1} & \cdots & a_{n-1, n-1}
\end{array}\right]
$$

Next Steps: Repeat the first two steps for A_{1} and all the submatrices A_{2}, \ldots, A_{n-1} that arise.

Gaussian Elimination

Next Step: Let matrix B be defined by taking the first row of A_{0}, second row of A_{1}, \ldots, last row of A_{n-1}.

Matrix B looks like:

LAST STEP: The determinant of the matrix A equals the product of diagonals of B, i.e., $\prod_{i=0}^{n-1} a_{i, i}$.

Gaussian Elimination

Next Step: Let matrix B be defined by taking the first row of A_{0}, second row of A_{1}, \ldots, last row of A_{n-1}.

Matrix B looks like:

$$
B=\left[\begin{array}{ccccc}
a_{0,0} & a_{0,1} & a_{0,2} & \ldots & a_{0, n-1} \\
0 & a_{1,1} & a_{1,2} & \ldots & a_{1, n-1} \\
0 & 0 & a_{2,2} & \ldots & a_{2, n-1} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & a_{n-1, n-1}
\end{array}\right] .
$$

LAST Step: The determinant of the matrix A equals the product of diagonals of B, i.e., $\prod_{i=0}^{n-1} a_{i, i}$.

Gaussian Elimination

Next Step: Let matrix B be defined by taking the first row of A_{0}, second row of A_{1}, \ldots, last row of A_{n-1}.

Matrix B looks like:

$$
B=\left[\begin{array}{ccccc}
a_{0,0} & a_{0,1} & a_{0,2} & \cdots & a_{0, n-1} \\
0 & a_{1,1} & a_{1,2} & \cdots & a_{1, n-1} \\
0 & 0 & a_{2,2} & \cdots & a_{2, n-1} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a_{n-1, n-1}
\end{array}\right]
$$

Last Step: The determinant of the matrix A equals the product of diagonals of B, i.e., $\prod_{i=0}^{n-1} a_{i, i}$.

Why Does it Work?

Theorem

The determinant of a matrix does not change by adding or subtracting a row to another row.

The Gaussian Elimination algorithm only adds or subtracts rows.

Why Does it Work?

Theorem

The determinant of a matrix does not change by adding or subtracting a row to another row.

The Gaussian Elimination algorithm only adds or subtracts rows.

Rewriting the Algorithm

Input: matrix A, and its size n .

1. If ($\mathrm{n}==1$) go to step 5;
2. If (A [0] [0] = = 0) \{

Find the smallest i such that A[i] [0] != 0;
If there is no such i then
return 0;
Add row $\mathrm{A}[\mathrm{i}]$ to row $\mathrm{A}[0]$;
3. For every i > 0:

Replace row $\mathrm{A}[\mathrm{i}]$ by $\mathrm{A}[\mathrm{i}]$ - (A[i] [0]/A[0][0]) * A [0];
4. Drop first row and first column of A and go back to 1 ;
5. Return the product of diagonal elements;

Rewriting the Algorithm

Input: matrix A, and its size n .

1. If ($\mathrm{n}==1$) go to step 5;
2. If ($\mathrm{A}[0][0]==0$) \{

Find the smallest i such that $A[i][0]$! $=0$;
If there is no such i then // determinant is zero return 0 ;
Add row A[i] to row A[0];
\}
3. For every i > 0:

Replace row $\mathrm{A}[\mathrm{i}]$ by $\mathrm{A}[\mathrm{i}]$ - (A[i][0]/A[0][0]) * A[0];
4. Drop first row and first column of A and go back to 1 ;
5. Return the product of diagonal elements;

Rewriting the Algorithm

Input: matrix A, and its size n .

1. If ($\mathrm{n}==1$) go to step 5;
2. If ($\mathrm{A}[0][0]==0$) \{

Find the smallest i such that $A[i][0]$! $=0$;
If there is no such i then // determinant is zero return 0 ;
Add row $\mathrm{A}[\mathrm{i}]$ to row $\mathrm{A}[0]$;
\}
3. For every i > 0: Replace row $\mathrm{A}[\mathrm{i}]$ by $\mathrm{A}[\mathrm{i}]$ - (A[i][0]/A[0][0]) * A[0];
5. Return the product of diagonal elements;

Rewriting the Algorithm

Input: matrix A , and its size n .

1. If ($\mathrm{n}==1$) go to step 5;
2. If ($\mathrm{A}[\mathrm{O}][\mathrm{O}]==0$) \{

Find the smallest i such that $A[i][0]$! $=0$;
If there is no such i then // determinant is zero return 0 ;
Add row $\mathrm{A}[\mathrm{i}]$ to row $\mathrm{A}[0]$;
\}
3. For every i > 0: Replace row A[i] by A[i] - (A[i][0]/A[0][0]) * A[0];
4. Drop first row and first column of A and go back to 1 ;

Rewriting the Algorithm

Input: matrix A , and its size n .

1. If ($\mathrm{n}==1$) go to step 5;
2. If ($\mathrm{A}[\mathrm{O}][\mathrm{O}]==0$) \{

Find the smallest i such that $A[i][0]$! $=0$;
If there is no such i then // determinant is zero return 0 ;
Add row $\mathrm{A}[\mathrm{i}]$ to row $\mathrm{A}[0]$;
\}
3. For every i > 0:

Replace row A[i] by A[i] - (A[i][0]/A[0][0]) * A[0];
4. Drop first row and first column of A and go back to 1 ;
5. Return the product of diagonal elements;

Converting to a C Program

```
/* Computes the determinant of size n matrix
    * stored in array A.
    */
float determinant(float A[] [N], int n)
{
```

float $B[N][N]$; // stores a submatrix of A
int m; // the size of B
float det = 1.0; // determinant value
int i;
copy_matrix(B, A, 0, n); // copy A to B

Converting to a C Program

/* Do the Gaussian elimination for the first row, * multiply the first diagonal element to det, and drop * the first row and column from B.
*/

```
for (m = n; m > 0; m--) \{
    if (B[0] [0] == 0) \{
        i = find_nonzero_row(B, m);
        if (i >= m) // no non-zero row
            return 0.0; // determinant is 0
        add_row \((B[0], B[i], 1, m) ; ~ / / ~ a d d ~ r o w ~ i ~ t o ~ r o w ~ 0 ~\)
    \}
```


Converting to a C Program

```
// Make first column of B zero except the first row
for (int t = 1; t < m; t++)
        add_row(B[t], B[0], - B[t][0]/B[0][0], m);
det = det * B[0][0]; // update determinant value
// drop the first row and column of B
copy_matrix(B, B, 1, m-1);
return det;
```

\}
\}

Converting to a C Program

/* Copies matrix A to B after dropping first i rows and * columns of A. The size of matrix B is m.
*/
void copy_matrix(float B[][N], float A[] [N], int i, int m) \{

$$
\begin{aligned}
& \text { for (int } k=0 ; k<m ; k++ \text {) } \\
& \text { for (int } j=0 ; j<m ; j++ \text {) } \\
& B[k][j]=A[k+i][j+i]
\end{aligned}
$$

\}

Recall the Algorithm

Input: matrix A , and its size n .

1. If ($\mathrm{n}==1$) go to step 5;
2. If (A[0] [0] = = 0) \{

Find the smallest i such that $\mathrm{A}[\mathrm{i}][0]$! $=0$;
If there is no such i then
return 0;
Add row $\mathrm{A}[\mathrm{i}$] to row $\mathrm{A}[0]$;
3. For every i > 0:

Replace row $\mathrm{A}[\mathrm{i}]$ by $\mathrm{A}[\mathrm{i}]$ - (A[i] [0]/A[0][0]) * A [0];
4. Drop first row and first column of A and go back to 1 ;
5. Return the product of diagonal elements;

Recall the Algorithm

Input: matrix A , and its size n .

1. If ($\mathrm{n}==1$) go to step 5;
2. If ($\mathrm{A}[\mathrm{O}][\mathrm{O}]==0$) \{

Find the smallest i such that $A[i][0]$! $=0$;
If there is no such i then // determinant is zero return 0;
Add row $\mathrm{A}[\mathrm{i}$] to row $\mathrm{A}[0]$;
\}

Drop 5. Return the product of diagonal elements;

Recall the Algorithm

Input: matrix A , and its size n .

1. If (n == 1) go to step 5;
2. If ($\mathrm{A}[0][0]==0$) \{

Find the smallest i such that $A[i][0]$! $=0$;
If there is no such i then // determinant is zero return 0 ;
Add row $\mathrm{A}[\mathrm{i}$] to row $\mathrm{A}[0]$;
\}
3. For every i > 0: Replace row A[i] by A[i] - (A[i][0]/A[0][0]) * A[0];
5. Return the product of diagonal elements;

Recall the Algorithm

Input: matrix A, and its size n .

1. If ($\mathrm{n}==1$) go to step 5;
2. If ($\mathrm{A}[\mathrm{O}][\mathrm{O}]==0$) \{

Find the smallest i such that $A[i][0]$! $=0$;
If there is no such i then // determinant is zero return 0 ;
Add row A[i] to row A[0];
\}
3. For every i > 0: Replace row A[i] by A[i] - (A[i][0]/A[0][0]) * A[0];
4. Drop first row and first column of A and go back to 1 ;

Recall the Algorithm

Input: matrix A, and its size n .

1. If ($\mathrm{n}==1$) go to step 5;
2. If ($\mathrm{A}[\mathrm{O}][\mathrm{O}]==0$) \{

Find the smallest i such that $A[i][0]$! $=0$;
If there is no such i then // determinant is zero return 0 ;
Add row $\mathrm{A}[\mathrm{i}]$ to row $\mathrm{A}[0]$;
\}
3. For every i > 0:

Replace row A[i] by A[i] - (A[i][0]/A[0][0]) * A[0];
4. Drop first row and first column of A and go back to 1 ;
5. Return the product of diagonal elements;

Recall Algorithm

- Observe that after Step 4, we get a matrix of size $n-1$ and we need to compute its determinant.
- This is the same problem as the original one, except that the size is one less.
- So we can use the same algorithm to solve it.
- That is why, the execution goes back to Step 1.
- We can implement this algorithm in C in another way: using recursion.

Recall Algorithm

- Observe that after Step 4, we get a matrix of size $n-1$ and we need to compute its determinant.
- This is the same problem as the original one, except that the size is one less.
- So we can use the same algorithm to solve it.
- That is why, the execution goes back to Step 1.
- We can implement this algorithm in C in another way: using recursion.

Recall Algorithm

- Observe that after Step 4, we get a matrix of size $n-1$ and we need to compute its determinant.
- This is the same problem as the original one, except that the size is one less.
- So we can use the same algorithm to solve it.
- That is why, the execution goes back to Step 1.
- We can implement this algorithm in C in another way: using

Recall Algorithm

- Observe that after Step 4, we get a matrix of size $n-1$ and we need to compute its determinant.
- This is the same problem as the original one, except that the size is one less.
- So we can use the same algorithm to solve it.
- That is why, the execution goes back to Step 1.
- We can implement this algorithm in C in another way: using recursion.

Program Using Recursion

/* Computes the determinant of size n matrix * stored in array A.
*/
float determinant(float A[] [N], int n)
\{

```
float B[N][N]; // stores a submatrix of A
int i;
if (n == 1) // Step 1: 1 x 1 matrix
    return A[0][0];
```


Program Using Recursion

```
// Step 2: Make A[0][0] non-zero
if (A[0][0] == 0) {
    i = find_nonzero_row(A, n);
    if (i >= n) // no non-zero row
            return 0.0; // determinant is 0
    add_row(A[0], A[i], 1, n); // add row i to row 0
}
```


Program Using Recursion

// Step 3: Make first column of A zero except first row for (int $\mathrm{t}=1$; $\mathrm{t}<\mathrm{n}$; $\mathrm{t}++$) add_row (A[t], A[0], - A[t][0]/A[0] [0], n);
// Step 4: drop the first row and column of A copy_matrix(B, A, 1, n-1);
return $\mathrm{A}[0][0]$ * determinant ($\mathrm{B}, \mathrm{n}-1$);
\}

Program Using Recursion

// Step 3: Make first column of A zero except first row for (int $\mathrm{t}=1$; $\mathrm{t}<\mathrm{n}$; $\mathrm{t}++$) add_row (A[t], A[0], - A[t][0]/A[0] [0], n);
// Step 4: drop the first row and column of A copy_matrix(B, A, 1, n-1);
return $A[0][0] * \operatorname{determinant}(B, n-1) ; ~ / / ~ r e c u r s i v e ~ c a l l!~$ \}

RECURSION

- A function is recursive if it is called inside its own definition.
- Such a definition is a substitute for loop, as in the example above.
- The execution jumps to the beginning of the function at the recursive call.
- To avoid infinite repetitions, it is necessary that:

Recursion

- A function is recursive if it is called inside its own definition.
- Such a definition is a substitute for loop, as in the example above.
- The execution jumps to the beginning of the function at the recursive call.
- To avoid infinite repetitions, it is necessary that:

Recursion

- A function is recursive if it is called inside its own definition.
- Such a definition is a substitute for loop, as in the example above.
- The execution jumps to the beginning of the function at the recursive call.
- To avoid infinite repetitions, it is necessary that:

Recursion

- A function is recursive if it is called inside its own definition.
- Such a definition is a substitute for loop, as in the example above.
- The execution jumps to the beginning of the function at the recursive call.
- To avoid infinite repetitions, it is necessary that:
> in every successive call, some parameter value reduces,
- and for small enough value of that parameter, there is no recursive call in the function.

Recursion

- A function is recursive if it is called inside its own definition.
- Such a definition is a substitute for loop, as in the example above.
- The execution jumps to the beginning of the function at the recursive call.
- To avoid infinite repetitions, it is necessary that:
- in every successive call, some parameter value reduces,
- and for small enough value of that parameter, there is no recursive call in the function.

Recursion

- A function is recursive if it is called inside its own definition.
- Such a definition is a substitute for loop, as in the example above.
- The execution jumps to the beginning of the function at the recursive call.
- To avoid infinite repetitions, it is necessary that:
- in every successive call, some parameter value reduces,
- and for small enough value of that parameter, there is no recursive call in the function.

