
ESc 101: Fundamentals of Computing

Lecture 25

Mar 8, 2010

Lecture 25 () ESc 101 Mar 8, 2010 1 / 21



Outline

1 Matrix Operations

Lecture 25 () ESc 101 Mar 8, 2010 2 / 21



Basic Matrix Operations

Addition, subtraction

Multiplication

Inversion

Computing Determinant

Lecture 25 () ESc 101 Mar 8, 2010 3 / 21



Basic Matrix Operations

Addition, subtraction

Multiplication

Inversion

Computing Determinant

Lecture 25 () ESc 101 Mar 8, 2010 3 / 21



Basic Matrix Operations

Addition, subtraction

Multiplication

Inversion

Computing Determinant

Lecture 25 () ESc 101 Mar 8, 2010 3 / 21



Basic Matrix Operations

Addition, subtraction

Multiplication

Inversion

Computing Determinant

Lecture 25 () ESc 101 Mar 8, 2010 3 / 21



Basic Matrix Operations

Addition, subtraction: Simple

Multiplication

Inversion

Computing Determinant

Lecture 25 () ESc 101 Mar 8, 2010 3 / 21



Basic Matrix Operations

Addition, subtraction

Multiplication: Done

Inversion

Computing Determinant

Lecture 25 () ESc 101 Mar 8, 2010 3 / 21



Basic Matrix Operations

Addition, subtraction

Multiplication

Inversion: Will develop an algorithm

Computing Determinant

Lecture 25 () ESc 101 Mar 8, 2010 3 / 21



Basic Matrix Operations

Addition, subtraction

Multiplication

Inversion

Computing Determinant: By definition, by Gaussian elimination

Lecture 25 () ESc 101 Mar 8, 2010 3 / 21



Determinant

Let A = [ai ,j ] be an n × n matrix. Its determinant is:

∑
π

sgn(π) ·
n−1∏
i=0

ai ,π(i),

where

π runs over all permutations of {0, 1, 2, . . . , n − 1}, and

sgn(π) ∈ {1,−1} is the sign of permutation π.

Lecture 25 () ESc 101 Mar 8, 2010 4 / 21



Computing Determinant

Computing determinant using the above formula will be very time
consuming: as there are n! permutations of {0, 1, 2, . . . , n − 1}, and
the formula sums over all of these.

There is a faster way known for computing determinant: Gaussian
elimination.

Lecture 25 () ESc 101 Mar 8, 2010 5 / 21



Computing Determinant

Computing determinant using the above formula will be very time
consuming: as there are n! permutations of {0, 1, 2, . . . , n − 1}, and
the formula sums over all of these.

There is a faster way known for computing determinant: Gaussian
elimination.

Lecture 25 () ESc 101 Mar 8, 2010 5 / 21



Gaussian Elimination

Let A0 = [ai ,j ] be an n × n matrix:

A0 =


a0,0 a0,1 . . . a0,n−1

a1,0 a1,1 . . . a1,n−1
...

...
. . .

...
an−1,0 an−1,1 . . . an−1,n−1

 .

First Step: Check if a0,0 6= 0. If it is, add to it the first row whose first
element is non-zero. If no such row exists, then the
determinant is zero.

Lecture 25 () ESc 101 Mar 8, 2010 6 / 21



Gaussian Elimination

Let A0 = [ai ,j ] be an n × n matrix:

A0 =


a0,0 a0,1 . . . a0,n−1

a1,0 a1,1 . . . a1,n−1
...

...
. . .

...
an−1,0 an−1,1 . . . an−1,n−1

 .

First Step: Check if a0,0 6= 0. If it is, add to it the first row whose first
element is non-zero. If no such row exists, then the
determinant is zero.

Lecture 25 () ESc 101 Mar 8, 2010 6 / 21



Gaussian Elimination

Second Step: For every i > 0, subtract
ai,0
a0,0

times the first row from the

ith row. This makes ai ,0 = 0 for all i > 0.

After the first two steps, the matrix looks like:

A0 =


a0,0 a0,1 . . . a0,n−1

0 a1,1 . . . a1,n−1
...

...
. . .

...
0 an−1,1 . . . an−1,n−1

 ,
where the values of many elements has been modified from their original
value.

Lecture 25 () ESc 101 Mar 8, 2010 7 / 21



Gaussian Elimination

Second Step: For every i > 0, subtract
ai,0
a0,0

times the first row from the

ith row. This makes ai ,0 = 0 for all i > 0.

After the first two steps, the matrix looks like:

A0 =


a0,0 a0,1 . . . a0,n−1

0 a1,1 . . . a1,n−1
...

...
. . .

...
0 an−1,1 . . . an−1,n−1

 ,
where the values of many elements has been modified from their original
value.

Lecture 25 () ESc 101 Mar 8, 2010 7 / 21



Gaussian Elimination

Let matrix A1 be:

A1 =

 a1,1 . . . a1,n−1
...

. . .
...

an−1,1 . . . an−1,n−1

 .

Next Steps: Repeat the first two steps for A1 and all the submatrices
A2, . . ., An−1 that arise.

Lecture 25 () ESc 101 Mar 8, 2010 8 / 21



Gaussian Elimination

Let matrix A1 be:

A1 =

 a1,1 . . . a1,n−1
...

. . .
...

an−1,1 . . . an−1,n−1

 .

Next Steps: Repeat the first two steps for A1 and all the submatrices
A2, . . ., An−1 that arise.

Lecture 25 () ESc 101 Mar 8, 2010 8 / 21



Gaussian Elimination

Next Step: Let matrix B be defined by taking the first row of A0,
second row of A1, . . ., last row of An−1.

Matrix B looks like:

B =


a0,0 a0,1 a0,2 . . . a0,n−1

0 a1,1 a1,2 . . . a1,n−1

0 0 a2,2 . . . a2,n−1
...

...
. . .

. . .
...

0 0 0 . . . an−1,n−1

 .

Last Step: The determinant of the matrix A equals the product of
diagonals of B, i.e.,

∏n−1
i=0 ai ,i .

Lecture 25 () ESc 101 Mar 8, 2010 9 / 21



Gaussian Elimination

Next Step: Let matrix B be defined by taking the first row of A0,
second row of A1, . . ., last row of An−1.

Matrix B looks like:

B =


a0,0 a0,1 a0,2 . . . a0,n−1

0 a1,1 a1,2 . . . a1,n−1

0 0 a2,2 . . . a2,n−1
...

...
. . .

. . .
...

0 0 0 . . . an−1,n−1

 .

Last Step: The determinant of the matrix A equals the product of
diagonals of B, i.e.,

∏n−1
i=0 ai ,i .

Lecture 25 () ESc 101 Mar 8, 2010 9 / 21



Gaussian Elimination

Next Step: Let matrix B be defined by taking the first row of A0,
second row of A1, . . ., last row of An−1.

Matrix B looks like:

B =


a0,0 a0,1 a0,2 . . . a0,n−1

0 a1,1 a1,2 . . . a1,n−1

0 0 a2,2 . . . a2,n−1
...

...
. . .

. . .
...

0 0 0 . . . an−1,n−1

 .

Last Step: The determinant of the matrix A equals the product of
diagonals of B, i.e.,

∏n−1
i=0 ai ,i .

Lecture 25 () ESc 101 Mar 8, 2010 9 / 21



Why Does it Work?

Theorem

The determinant of a matrix does not change by adding or subtracting a
row to another row.

The Gaussian Elimination algorithm only adds or subtracts rows.

Lecture 25 () ESc 101 Mar 8, 2010 10 / 21



Why Does it Work?

Theorem

The determinant of a matrix does not change by adding or subtracting a
row to another row.

The Gaussian Elimination algorithm only adds or subtracts rows.

Lecture 25 () ESc 101 Mar 8, 2010 10 / 21



Rewriting the Algorithm

Input: matrix A, and its size n.

1. If (n == 1) go to step 5;

2. If (A[0][0] = = 0) {

Find the smallest i such that A[i][0] != 0;

If there is no such i then // determinant is zero

return 0;

Add row A[i] to row A[0];

}

3. For every i > 0:

Replace row A[i] by A[i] - (A[i][0]/A[0][0]) * A[0];

4. Drop first row and first column of A and go back to 1;

5. Return the product of diagonal elements;

Lecture 25 () ESc 101 Mar 8, 2010 11 / 21



Rewriting the Algorithm

Input: matrix A, and its size n.

1. If (n == 1) go to step 5;

2. If (A[0][0] = = 0) {

Find the smallest i such that A[i][0] != 0;

If there is no such i then // determinant is zero

return 0;

Add row A[i] to row A[0];

}

3. For every i > 0:

Replace row A[i] by A[i] - (A[i][0]/A[0][0]) * A[0];

4. Drop first row and first column of A and go back to 1;

5. Return the product of diagonal elements;

Lecture 25 () ESc 101 Mar 8, 2010 11 / 21



Rewriting the Algorithm

Input: matrix A, and its size n.

1. If (n == 1) go to step 5;

2. If (A[0][0] = = 0) {

Find the smallest i such that A[i][0] != 0;

If there is no such i then // determinant is zero

return 0;

Add row A[i] to row A[0];

}

3. For every i > 0:

Replace row A[i] by A[i] - (A[i][0]/A[0][0]) * A[0];

4. Drop first row and first column of A and go back to 1;

5. Return the product of diagonal elements;

Lecture 25 () ESc 101 Mar 8, 2010 11 / 21



Rewriting the Algorithm

Input: matrix A, and its size n.

1. If (n == 1) go to step 5;

2. If (A[0][0] = = 0) {

Find the smallest i such that A[i][0] != 0;

If there is no such i then // determinant is zero

return 0;

Add row A[i] to row A[0];

}

3. For every i > 0:

Replace row A[i] by A[i] - (A[i][0]/A[0][0]) * A[0];

4. Drop first row and first column of A and go back to 1;

5. Return the product of diagonal elements;

Lecture 25 () ESc 101 Mar 8, 2010 11 / 21



Rewriting the Algorithm

Input: matrix A, and its size n.

1. If (n == 1) go to step 5;

2. If (A[0][0] = = 0) {

Find the smallest i such that A[i][0] != 0;

If there is no such i then // determinant is zero

return 0;

Add row A[i] to row A[0];

}

3. For every i > 0:

Replace row A[i] by A[i] - (A[i][0]/A[0][0]) * A[0];

4. Drop first row and first column of A and go back to 1;

5. Return the product of diagonal elements;

Lecture 25 () ESc 101 Mar 8, 2010 11 / 21



Converting to a C Program

/* Computes the determinant of size n matrix

* stored in array A.

*/

float determinant(float A[][N], int n)

{

float B[N][N]; // stores a submatrix of A

int m; // the size of B

float det = 1.0; // determinant value

int i;

copy_matrix(B, A, 0, n); // copy A to B

Lecture 25 () ESc 101 Mar 8, 2010 12 / 21



Converting to a C Program

/* Do the Gaussian elimination for the first row,

* multiply the first diagonal element to det, and drop

* the first row and column from B.

*/

for (m = n; m > 0; m--) {

if (B[0][0] == 0) {

i = find_nonzero_row(B, m);

if (i >= m) // no non-zero row

return 0.0; // determinant is 0

add_row(B[0], B[i], 1, m); // add row i to row 0

}

Lecture 25 () ESc 101 Mar 8, 2010 13 / 21



Converting to a C Program

// Make first column of B zero except the first row

for (int t = 1; t < m; t++)

add_row(B[t], B[0], - B[t][0]/B[0][0], m);

det = det * B[0][0]; // update determinant value

// drop the first row and column of B

copy_matrix(B, B, 1, m-1);

}

return det;

}

Lecture 25 () ESc 101 Mar 8, 2010 14 / 21



Converting to a C Program

/* Copies matrix A to B after dropping first i rows and

* columns of A. The size of matrix B is m.

*/

void copy_matrix(float B[][N], float A[][N], int i, int m)

{

for (int k = 0; k < m; k++)

for (int j = 0; j < m; j++)

B[k][j] = A[k+i][j+i];

}

Lecture 25 () ESc 101 Mar 8, 2010 15 / 21



Recall the Algorithm

Input: matrix A, and its size n.

1. If (n == 1) go to step 5;

2. If (A[0][0] = = 0) {

Find the smallest i such that A[i][0] != 0;

If there is no such i then // determinant is zero

return 0;

Add row A[i] to row A[0];

}

3. For every i > 0:

Replace row A[i] by A[i] - (A[i][0]/A[0][0]) * A[0];

4. Drop first row and first column of A and go back to 1;

5. Return the product of diagonal elements;

Lecture 25 () ESc 101 Mar 8, 2010 16 / 21



Recall the Algorithm

Input: matrix A, and its size n.

1. If (n == 1) go to step 5;

2. If (A[0][0] = = 0) {

Find the smallest i such that A[i][0] != 0;

If there is no such i then // determinant is zero

return 0;

Add row A[i] to row A[0];

}

3. For every i > 0:

Replace row A[i] by A[i] - (A[i][0]/A[0][0]) * A[0];

4. Drop first row and first column of A and go back to 1;

5. Return the product of diagonal elements;

Lecture 25 () ESc 101 Mar 8, 2010 16 / 21



Recall the Algorithm

Input: matrix A, and its size n.

1. If (n == 1) go to step 5;

2. If (A[0][0] = = 0) {

Find the smallest i such that A[i][0] != 0;

If there is no such i then // determinant is zero

return 0;

Add row A[i] to row A[0];

}

3. For every i > 0:

Replace row A[i] by A[i] - (A[i][0]/A[0][0]) * A[0];

4. Drop first row and first column of A and go back to 1;

5. Return the product of diagonal elements;

Lecture 25 () ESc 101 Mar 8, 2010 16 / 21



Recall the Algorithm

Input: matrix A, and its size n.

1. If (n == 1) go to step 5;

2. If (A[0][0] = = 0) {

Find the smallest i such that A[i][0] != 0;

If there is no such i then // determinant is zero

return 0;

Add row A[i] to row A[0];

}

3. For every i > 0:

Replace row A[i] by A[i] - (A[i][0]/A[0][0]) * A[0];

4. Drop first row and first column of A and go back to 1;

5. Return the product of diagonal elements;

Lecture 25 () ESc 101 Mar 8, 2010 16 / 21



Recall the Algorithm

Input: matrix A, and its size n.

1. If (n == 1) go to step 5;

2. If (A[0][0] = = 0) {

Find the smallest i such that A[i][0] != 0;

If there is no such i then // determinant is zero

return 0;

Add row A[i] to row A[0];

}

3. For every i > 0:

Replace row A[i] by A[i] - (A[i][0]/A[0][0]) * A[0];

4. Drop first row and first column of A and go back to 1;

5. Return the product of diagonal elements;

Lecture 25 () ESc 101 Mar 8, 2010 16 / 21



Recall Algorithm

Observe that after Step 4, we get a matrix of size n − 1 and we need
to compute its determinant.

This is the same problem as the original one, except that the size is
one less.

So we can use the same algorithm to solve it.

That is why, the execution goes back to Step 1.

We can implement this algorithm in C in another way: using
recursion.

Lecture 25 () ESc 101 Mar 8, 2010 17 / 21



Recall Algorithm

Observe that after Step 4, we get a matrix of size n − 1 and we need
to compute its determinant.

This is the same problem as the original one, except that the size is
one less.

So we can use the same algorithm to solve it.

That is why, the execution goes back to Step 1.

We can implement this algorithm in C in another way: using
recursion.

Lecture 25 () ESc 101 Mar 8, 2010 17 / 21



Recall Algorithm

Observe that after Step 4, we get a matrix of size n − 1 and we need
to compute its determinant.

This is the same problem as the original one, except that the size is
one less.

So we can use the same algorithm to solve it.

That is why, the execution goes back to Step 1.

We can implement this algorithm in C in another way: using
recursion.

Lecture 25 () ESc 101 Mar 8, 2010 17 / 21



Recall Algorithm

Observe that after Step 4, we get a matrix of size n − 1 and we need
to compute its determinant.

This is the same problem as the original one, except that the size is
one less.

So we can use the same algorithm to solve it.

That is why, the execution goes back to Step 1.

We can implement this algorithm in C in another way: using
recursion.

Lecture 25 () ESc 101 Mar 8, 2010 17 / 21



Program Using Recursion

/* Computes the determinant of size n matrix

* stored in array A.

*/

float determinant(float A[][N], int n)

{

float B[N][N]; // stores a submatrix of A

int i;

if (n == 1) // Step 1: 1 x 1 matrix

return A[0][0];

Lecture 25 () ESc 101 Mar 8, 2010 18 / 21



Program Using Recursion

// Step 2: Make A[0][0] non-zero

if (A[0][0] == 0) {

i = find_nonzero_row(A, n);

if (i >= n) // no non-zero row

return 0.0; // determinant is 0

add_row(A[0], A[i], 1, n); // add row i to row 0

}

Lecture 25 () ESc 101 Mar 8, 2010 19 / 21



Program Using Recursion

// Step 3: Make first column of A zero except first row

for (int t = 1; t < n; t++)

add_row(A[t], A[0], - A[t][0]/A[0][0], n);

// Step 4: drop the first row and column of A

copy_matrix(B, A, 1, n-1);

return A[0][0] * determinant(B, n-1); // recursive call!

}

Lecture 25 () ESc 101 Mar 8, 2010 20 / 21



Program Using Recursion

// Step 3: Make first column of A zero except first row

for (int t = 1; t < n; t++)

add_row(A[t], A[0], - A[t][0]/A[0][0], n);

// Step 4: drop the first row and column of A

copy_matrix(B, A, 1, n-1);

return A[0][0] * determinant(B, n-1); // recursive call!

}

Lecture 25 () ESc 101 Mar 8, 2010 20 / 21



Recursion

A function is recursive if it is called inside its own definition.

Such a definition is a substitute for loop, as in the example above.

The execution jumps to the beginning of the function at the recursive
call.

To avoid infinite repetitions, it is necessary that:
I in every successive call, some parameter value reduces,
I and for small enough value of that parameter, there is no recursive call

in the function.

Lecture 25 () ESc 101 Mar 8, 2010 21 / 21



Recursion

A function is recursive if it is called inside its own definition.

Such a definition is a substitute for loop, as in the example above.

The execution jumps to the beginning of the function at the recursive
call.

To avoid infinite repetitions, it is necessary that:
I in every successive call, some parameter value reduces,
I and for small enough value of that parameter, there is no recursive call

in the function.

Lecture 25 () ESc 101 Mar 8, 2010 21 / 21



Recursion

A function is recursive if it is called inside its own definition.

Such a definition is a substitute for loop, as in the example above.

The execution jumps to the beginning of the function at the recursive
call.

To avoid infinite repetitions, it is necessary that:
I in every successive call, some parameter value reduces,
I and for small enough value of that parameter, there is no recursive call

in the function.

Lecture 25 () ESc 101 Mar 8, 2010 21 / 21



Recursion

A function is recursive if it is called inside its own definition.

Such a definition is a substitute for loop, as in the example above.

The execution jumps to the beginning of the function at the recursive
call.

To avoid infinite repetitions, it is necessary that:
I in every successive call, some parameter value reduces,
I and for small enough value of that parameter, there is no recursive call

in the function.

Lecture 25 () ESc 101 Mar 8, 2010 21 / 21



Recursion

A function is recursive if it is called inside its own definition.

Such a definition is a substitute for loop, as in the example above.

The execution jumps to the beginning of the function at the recursive
call.

To avoid infinite repetitions, it is necessary that:
I in every successive call, some parameter value reduces,
I and for small enough value of that parameter, there is no recursive call

in the function.

Lecture 25 () ESc 101 Mar 8, 2010 21 / 21



Recursion

A function is recursive if it is called inside its own definition.

Such a definition is a substitute for loop, as in the example above.

The execution jumps to the beginning of the function at the recursive
call.

To avoid infinite repetitions, it is necessary that:
I in every successive call, some parameter value reduces,
I and for small enough value of that parameter, there is no recursive call

in the function.

Lecture 25 () ESc 101 Mar 8, 2010 21 / 21


	Matrix Operations

